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ABSTRACT
Middleboxes implement a variety of network management policies
(e.g., prioritizing or blocking traffic) in their networks. While such
policies can be beneficial (e.g., blocking malware) they also raise
issues of network neutrality and freedom of speech when used
for application-specific differentiation and censorship. There is
a poor understanding of how such policies are implemented in
practice, and how they can be evaded efficiently. As a result, most
circumvention solutions are brittle, point solutions based onmanual
analysis.

This paper presents the design and implementation of lib·erate,
a tool for automatically identifying middlebox policies, reverse-
engineering their implementations, and adaptively deploying cus-
tom circumvention techniques. Unlike previous work, our approach
is application-agnostic, can be deployed unilaterally (i.e., only at
one endpoint) on unmodified applications via a linked library or
transparent proxy, and can adapt to changes to classifiers at run-
time. We implemented a lib·erate prototype as a transparent proxy
and evaluate it both in a testbed environment and in operational
networks that throttle or block traffic based on DPI-based classifier
rules, and show that our approach is effective across a wide range
of middlebox deployments.
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1 INTRODUCTION
It is common for ISPs to use middleboxes to manage their network
traffic. Recent work [32, 35] showed that suchmiddleboxes are often
implemented using deep packet inspection (DPI) on network traffic,
relying on packet contents (e.g., Host headers, TLS Server Name
Indication (SNI) extensions, or protocol-specific fields) to selectively
apply policies to flows. While such policies may sometimes be
beneficent, there are many scenarios in which they may cause harm
to users and/or service providers, e.g., by violating net neutrality,
implementing traffic shaping, or censoring content.

In response, researchers have proposed a number of solutions to
obfuscate traffic in a way that evades classification. In general, these
approaches entail encrypting/proxying traffic [3, 19], transforming
flows to resemble different protocols [48, 49], or selectively modify-
ing contents of fields that are targeted by classifiers [24]. However,
developers of evasion techniques find themselves in an arms race
with network providers, where the scales are tipped in favor of the
provider. Designing evasion schemes generally involves one-off
analyses based on a specific middlebox classifier (or suspected cen-
sorship trigger). Further, these schemes face deployment hurdles as
they often require both client- and server-side changes. For exam-
ple, the mobile app Signal recently deployed domain fronting [24]
to avoid blocking in Egypt and UAE [36]. This required users to
update their apps to evade censorship, with the obvious caveat that
the app store might also be censored in the region. In contrast, a
network provider can often neutralize a statically defined evasion
technique once it is known (e.g., by blocking a fronted domain). To
resolve this imbalance, there is a need for generalizable, adaptive,
and non-invasive techniques to evade classifiers.

https://doi.org/10.1145/3131365.3131376
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This paper presents the design and implementation of lib·erate,
a tool for identifying middlebox policies, reverse-engineering their
implementations, and adaptively deploying custom circumvention
techniques. Our key insight is that differentiation is necessarily im-
plemented by middleboxes using incomplete models of end-to-end
communication at the network and transport layers. These models
are necessarily incomplete because a middlebox does not have visi-
bility into the state at endpoints; namely, a packet that traverses a
middlebox may never reach the intended destination (and/or the
corresponding application at the destination). Further, in practice
we find that middlebox designers do not completely implement
standards governing network traffic, nor do they necessarily in-
spect every packet of every flow (potentially for efficiency/cost
reasons). With this insight, lib·erate conducts efficient, targeted net-
work measurements to identify any network- and transport-layer
inconsistencies between middlebox- and endpoint-views of end-to-
end communication, and leverages this information to transform
arbitrary network traffic such that it is purposefully misclassified
(e.g., to avoid shaping or censorship).

At a high level, lib·erate operates in four automated phases. First,
it conducts tests to determine whether an application’s network
traffic is differentiated by a middlebox (e.g., throttled, blocked). If so,
it identifies which features of that network traffic that themiddlebox
uses to classify the application for differentiated treatment. Next,
it uses this information to test candidate evasion techniques that
are designed to exploit inconsistencies between the middlebox and
end-to-end view of network traffic. Finally, lib·erate uses the lowest
cost, working technique to evade differentiation for network traffic
generated by the application.

Our approach is application agnostic, can be deployed unilater-
ally (i.e., only at one endpoint) on unmodified applications via a
linked library or transparent proxy, and can adapt to changes to
classifiers at runtime. Like any evasion technique, lib·erate does
not end the cat-and-mouse game between evasion and countermea-
sures; rather, by automating evasion and adapting to changes in
middlebox classifiers quickly, it makes countermeasures substan-
tially more expensive for network providers.

The primary contributions of this paper are:
• An application-agnostic approach to identifying traffic-classifica-
tion rules for differentiation.
• A taxonomy of evasion techniques that exploit inconsistencies
between end-to-end and middlebox views of network flows.
• A library that identifies classification rules, finds the network
location of the corresponding middlebox, and deploys low-cost,
custom countermeasures without modifying applications.
• Public, open-source tools and datasets to allow others to incor-
porate and extend our work.1

• An empirical measurement of traffic classifiers and their sus-
ceptibility to evasion techniques.

We evaluate lib·erate in a testbed environment and in a variety
of operational networks that throttle or block traffic using DPI-
based classifier rules, and show that lib·erate is effective across
a wide range of middlebox deployments (our testbed device, T-
Mobile’s Binge On middlebox, AT&T’s Stream Saver middlebox,

1http://dd.meddle.mobi/liberate.html

Sprint’s unlimited data plans2, the Great Firewall of China, and
Iran’s censor).3 We further use lib·erate to characterize middlebox
policies and implementations in these operational networks. Our
key findings are as follows.
• Policies are implemented using classifiers that rely on searches
for keywords in HTTP payloads, SNI fields, and protocol-
specific fields. Some of the policies apply only to a small num-
ber of initial packets, while Iran’s censoring devices inspect
the entire flow. We found no evidence that UDP traffic was
classified by any of the operational networks we tested, pro-
viding a surprisingly easy way to evade their policies (i.e., use
UDP-based protocols).
• Middleboxes running the classifiers exhibit different, incom-
plete implementations of network and transport layers. Specif-
ically, our testbed device does not check for a wide range of
invalid packet header values, while the Great Firewall of China
(GFC) does extensive packet validation. Iran and T-Mobile use
middleboxes that only partially check for invalid packet head-
ers. Further, we find that reordering of TCP segments can alter
classification in all instances except for the GFC and AT&T
(the latter uses a transparent HTTP proxy).
• Except for AT&T and Iran, all middleboxes in our experiments
are vulnerable to misclassification using TTL-limited traffic
that reaches the middlebox but not the server.
• The classifiers for Iran and AT&T only inspect port 80 for
matching content; thus simply changing the server port can
evade classification.
• Classifier results do not persist indefinitely, meaning that estab-
lishing a connection and pausing can evade middlebox policies.
For some devices, flow contents are ignored after a fixed delay.
• If we can assume server-side support as well, we found that in-
serting even one packet carrying dummy traffic (that is ignored
by the server) at the beginning of a flow evades classification
in our testbed, T-Mobile, AT&T, and the GFC.

The paper is organized as follows. The next section discusses
related work in the area of middlebox implementations and evasion.
In Section 3 we detail the goals and approach taken in this work.
Section 4 presents the design of lib·erate and Section 5 provides
several key implementation details. We evaluate lib·erate in Sec-
tion 6, both in terms of effectiveness at identifying policies and
efficiency at evading the classifiers that implement them. We dis-
cuss open questions and future work in Section 7, and we conclude
in Section 8.

2 RELATEDWORK
We now describe related efforts that focus on identifying middlebox
policies and classifiers, and developing strategies to evade them.
Table 1 summarizes how lib·erate compares with related work on
middlebox evasion.

Identifying traffic-shapingmiddleboxes. A substantial body
of research focuses on identifying when ISPs implement policies
that provide different service to different applications [43], and how
these policies are implemented. Historically, previous work found
2Sprint specifies that their unlimited plan includes “mobile optimized video, gaming & music
streaming”
3An analysis of Verizon’s DPI classifier appears in [15].
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that port-based differentiation led to BitTorrent shaping and block-
ing [20]. NetPolice [51], Bonafide [13] and NANO [44] use statistical
analysis over different Internet paths to identify and isolate the lo-
cation where traffic differentiation occurs. Likewise, Tracebox [18]
reveals the existence of traffic-modifying middleboxes along a path,
but does not focus on classification. Our work [32] used a VPN
proxy to identify when networks selectively provide differential
service (often shaping/throttling) for certain applications. In closely
related work, we [35] develop techniques that reverse engineer
modern DPI devices and find that they focus on keywords in HTTP
headers and TLS handshakes.

Network intrusion detection systems (NIDS). NIDS devices
seek to identify and block traffic that is potentially harmful to hosts
in a network. A series of studies [34, 39, 40] identify network- and
transport-layer techniques to evade NIDS devices, and countermea-
sures that defeat them. Interestingly, we find that several of their
proposed defenses are not deployed by the middleboxes we stud-
ied. In addition, we developed several new evasion techniques not
previously explored in prior work. As we discuss in Section 4, we
leverage inferred information about how application-specific traffic
classifiers are implemented, which admits new evasion techniques
not previously considered in the NIDS context.

Measuring Internet censorship. Recentmeasurement research
on censorship tends to focus on a single country (e.g., China [9–
11, 16, 17, 38, 41, 45, 50, 52], or Iran [7, 8, 12]) or censorship tech-
nique (e.g., TCP RSTs [16, 17, 47, 50], or DNS filtering [10, 11, 21, 45]).
Generalizing measurement tools and techniques between countries
is challenging because they are tied to the specifics of how censor-
ship is implemented.

Evading (censorship) classifiers. As online content controls
and Internet censorship have evolved, so have the methods and
techniques used to circumvent them. We briefly describe several
key strategies below.
VPNs and proxies. These approaches avoid censorship by using prox-
ies to access content on behalf of the user. These range from use of
HTTP proxies and virtual private networks (VPNs) [3] to tunneling
web browsing over Tor [19]. We found that using VPN proxies
often prevented classifiers from providing differential service to
video streaming traffic [32]. However, there is an active arms race
between providers of proxies like Tor and censors who attempt to
detect and block them.
Covert channels. These techniques modify censored traffic to re-
semble “innocuous” traffic by imitating or piggy-backing on other
application-layer protocols [26, 29, 37]. This method has been used
to hide Tor traffic from censors that classify and block Tor through
protocol fingerprinting techniques [5]. However, recent work shows
that many of these techniques can be identified based on discrep-
ancies from the cover protocol [25, 28].
Obfuscating traffic. This circumvention approach avoids classifica-
tion by “looking like nothing” (i.e., randomizing content and other
properties of the protocol). ScrambleSuit [49] and obfs4 [48] use
this technique to circumvent blocking of Tor. These techniques,
however, rely on censors employing a black-listing approach where
they only shape classified traffic. In practice, networks may apply a
default differentiation policy for “unclassified” traffic (e.g., limited

bandwidth [32] or disrupting connections), under the assumption
that such traffic corresponds to malware, attacks, errors, or evasion.
Domain fronting. Domain fronting (e.g., meek [24]) attempts to
evade classification by proxying targeted traffic using servers run-
ning existing, popular services (e.g., exchanging Signal chat mes-
sages over Google servers [36]). It relies on the assumption that cen-
sors will be reluctant to block access to popular services. However,
this assumption does not always hold, particularly in repressive
regimes. For example, several fronting domains have been blocked
in China [6] and the list continues to grow [2].
Censorship fuzzing. Khattak et al. [33] make the observation that
censorship monitors use similar principles as network intrusion
detection systems (NIDS), and leverage this to identify gaps in the
Great Firewall of China (GFC) by conducting extensive probing.
However, to the best of our knowledge the evasion techniques they
identified require extensive client support and makes certain as-
sumptions about the server, such as how it processes overlapping
fragments and segments. In contrast, we focus only on unilaterally
deployable evasion techniques that work on unmodified applica-
tions. A concurrently published study [46] investigated in detail
how the GFCmaintains state for network connections, and how this
can be exploited to evade censorship. The authors find additional
effective evasion techniques for the GFC, but their approach is not
automated and it is unclear to what extent it generalizes beyond
the GFC.

Summary. The process of detecting, reverse-engineering, and
evading traffic classifiers has faced an uphill battle. Many tools
require significant development effort, but are easily thwarted once
detected by the censor. Some tools trade performance for additional
stealthiness (e.g., Castle [26] provides 50-400 Bps of throughput)
which makes them inappropriate for popular bandwidth-intensive
services. Further, solutions that rely on infrastructure (e.g., Tor
relays, meek proxies) require maintenance by a third party. The
problem is further complicated by solutions that require software
to be installed on both the client- and server-side of the connection
or the use of a proxy to mediate interactions with existing servers.
Thus, there is a need for an approach that automatically identifies
when policies impact network traffic, determines how traffic is
classified to be subject to these policies, and deploys circumvention
strategies to evade them. We describe how lib·erate achieves this in
the next section.

3 GOALS AND APPROACH
This section describes our goals and approach in the design and
implementation of lib·erate.

3.1 Goals
Our primary goal is to provide a tool that enables unmodified net-
work applications to automatically, adaptively, and unilaterally
evade middleboxes that perform unwanted DPI-based differenti-
ation. Unwanted differentiation can include throttling (which is
prohibited in the U.S. at the time of writing [23], but still occurs)
or content blocking [30]. lib·erate is designed as both a library that
can be wrapped around existing socket libraries or as a local proxy
service to lower the barrier to adoption. Further, lib·erate can be
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Method Overhead per Client Application Classifier evasion Validation
flow (n packets) only agnostic Rule detection Splitting/ Reordering Inert packet injection Flushing in the wild

VPN O (n) × ✓ × × × × N/A
Covert channels[26, 29, 37] O (n) × × × × × × ×

Obfuscation[48] O (n) × × × × × × ✓
Domain fronting[24] O (1) × × × × × × ✓
C. Kreibich et al. [34] O (1) ✓ ✓ × × ✓ × ×

lib·erate O (1) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison between lib·erate and other classifier evasion methods and studies.

deployed unilaterally by the client or server (or deployed on both
endpoints). lib·erate automatically identifies differentiation and de-
termines the policy used to classify the flow. Based on this, lib·erate
applies evasion techniques, and adapts them as needed when the
classifier policy changes. Finally, our approach is designed to have
sufficiently low overhead so as not to negatively impact end-to-end
performance during evasion.

Assumptions. We make the following assumptions in the de-
sign and implementation of our system. First, we assume that differ-
entiation is detectable, and is implemented on amiddlebox that does
not have access to client-side or server-side connection state. Sub-
stantial prior work details how to detect practices such as shaping,
throttling, content modification, and blocking [20, 32, 51]; further,
these practices are well known to be deployed on middleboxes that
are not co-resident with clients and servers. We assume that these
middleboxes use traffic classifiers to identify flows that receive
differential treatment, so any differentiation that is not based on
contents of network traffic (e.g., differentiation based on the client’s
IP address) is out of scope.

Our approach focuses on applications that use TCP or UDP on
top of IP. We further assume that communication is between exactly
two endpoints and at least one endpoint runs lib·erate.

Non-goals. We do not attempt to hide our differentiation/eva-
sion tests, replay servers, or evasion techniques, and as such they
can potentially be detected by the network implementing differ-
entiation. However, by having an arsenal of evasion techniques
we can quickly adapt to countermeasures. Our previous work dis-
cusses strategies for detecting adversarial treatment of test traffic
and replay servers [32]. Further, we do not claim to provide any
anonymity or privacy for activities where lib·erate helps to evade
classifiers. lib·erate does not attempt to detect stealthy or random-
ized differentiation. Finally, we recognize that lib·erate can be used
for both good (e.g., freedom of speech) or bad (e.g., evading NIDS)
purposes, and do not condone (nor can we control) any use that
might lead to harm.

3.2 Approach
We take an empirical approach to understanding and evading mid-
dlebox policies, using a systematic analysis of network and trans-
port protocols to provide a general, effective, and efficient imple-
mentation. Our system entails the following steps.
Differentiation detection. We use general techniques for detect-
ing differentiation in the form of shaping/policing, content modifi-
cation, and/or blocking.
Characterization. We next reverse engineer the classifier rules
that implement it (Section 4.2).

Evasion evaluation.Wedevelop a taxonomy of application-agnostic
evasion techniques that leverage a mismatch between a classifier’s
view of the flow state and the view from the end hosts (Section 4.3).
We also build a system that automatically deploys evasion tech-
niques based on observed classifiers, both when an application first
runs in a network and subsequently when any classification rules
or policies change (Section 5).
Evasion deployment. To ascertain the effectiveness of our ap-
proach, we evaluate it both in a testbed environment equipped with
a carrier-grade DPI traffic shaper, and against several differentiating
middleboxes in operational networks (Section 6).

4 LIB·ERATE DESIGN
We now discuss the design of lib·erate. At a high level, our de-
sign entails two phases: (1) understanding the policies and traffic-
classification rules employed by middleboxes in a network (if any),
and (2) developing and applying application-agnostic techniques to
evade the classifier. For (1), we extend previous work to provide a
more general approach to detecting differentiating middlebox clas-
sification rules. For (2), we build a taxonomy of potential evasion
techniques for TCP, UDP, and general IP traffic, broadly categorized
as inert packet insertion, payload splitting/reordering, and classifica-
tion flushing. These approaches leverage the fact that middleboxes
have an incomplete view of end-to-end traffic, and may even have
an incomplete implementation of transport and network layers.
Further, by operating at the network and transport layers, our
approach can be implemented as a networking library or proxy
without needing application modifications.

Figure 1 presents an overview of the key components in lib·erate.
First, we replay modified traces of application traffic to detect if
differentiation occurs. If it does, we conduct a detailed, automated
diagnosis of the specific traffic-classification matching fields that se-
lect the application for differentiation. After identifying the match-
ing fields, we select from a suite of classifier-evasion techniques
and iteratively try them until one succeeds or we have exhausted
our approaches.4 Finally, we use the most efficient, successful eva-
sion technique for the application at runtime. Note that the first
three steps require interacting with a replay server, but the last step
(evasion) does not. Further, the result of the first three steps can be
reused for subsequent flows from the classified application (until
the classifier changes in a way that breaks evasion); thus, these
steps are rarely executed in practice and represent a one-time cost
for the lifetime of a classifier rule.

4In this study, we try all possible techniques to find successful ones.
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Figure 1: Overview of lib·erate. In the first step, lib·erate detects DPI-based differentiation. If there is differentiation, lib·erate
characterizes the classifier that implements it and tests evasion techniques based on the results. Last, lib·erate deploys an
efficient evasion technique for applications at runtime.
4.1 Differentiation Detection
For the initial phase of lib·erate, as depicted on the left of Fig. 1, lib·
erate detects whether a network on the path between endpoints
applies differentiation based on contents of an application flow. For
this step we use our previous work [31, 32], which detects differ-
entiation in terms of bandwidth limitations, latency differences,
content modification, blocking, and zero-rating.

This previous approach uses VPN proxies and randomized packet
payloads to avoid classification, for comparison with unmodified
application traffic that is exposed to DPI classification rules. How-
ever, in practice running VPN clients and servers across platforms is
not easily deployable or scalable. Further, we find that randomized
packet payloads are sometimes accidentally classified as a targeted
application, leading to differentiation on traffic that was assumed
not be exposed.

Thus, we validate the existence of deep-packet inspection (DPI)
classifiers by sending traffic payloads with bits inverted from their
original recorded payloads. This ensures that any bit patterns used
for classification are systematically removed from the payload.

4.2 Characterization
After detecting differentiation, we use the binary analysis technique
proposed in prior work [35] to identify the traffic-classification rules
employed by the detected middlebox. Briefly, this technique con-
ducts a recursive, binary search on payload contents to determine
which bytes are responsible for classification, by “blinding” portions
of the payload (i.e., inverting the bits) to prevent them from trigger-
ing classification. The end result is a list of packets and regions of
payload that triggered classification (“Characterization” in Fig. 1).
We call these portions of payloads matching fields used by classifier
rules.

We extend this previous work in the following ways. First, we
adapt the technique to additionally detect UDP-based classifica-
tion rules. Second, we develop a new strategy to efficiently detect

whether “match-and-forget” rules apply.5 Specifically, we prepend
an increasing number of packets with random payloads before a
packet that triggered classification; if these flows always experi-
ence differentiation then we have high confidence that the classifier
matches on all packets in a flow. On the other hand, if we detect
that i packets contain matching fields and prepending j packets
changes the classification result, we can confirm that the classifier
checks at most (i + j − 1) packets for matching fields.

Characterization efficiency. Even with the optimization de-
scribed in the previous paragraphs, characterization may still re-
quire tens of minutes to complete. While we can reduce the number
of tests (and thus the time to complete), there is a trade-off between
time and accuracy.

An alternative approach to reduce runtimes is to distribute dis-
joint subsets of the tests among multiple users in the same network,
and aggregate the results. These test results can be stored in a well
known public location (e.g., a server or a DHT) so that all users
can identify the matching rules without running additional tests.
However, the drawback of this approach is that an adversary could
see the detected rules and adapt accordingly.

lib·erate must run the characterization step whenever an appli-
cation’s classification rule changes. In our experience, these rules
change relatively infrequently compared to the time required to
characterize classification rules, and they change only in response
to applications using different protocols (e.g., HTTPS instead of
HTTP) or different domain names and/or content delivery providers.
To detect a change in classification rule, lib·erate repeats the test
for differentiation. If differentiation occurs even when using a pre-
viously successful evasion technique, then lib·erate assumes that
matching rules have changed, and repeats the characterization and
evasion steps.

Characterization countermeasures. An adversary wishing
to evade our characterization step could selectively choose not to
differentiate against our replay servers or our tests. We can detect

5Previously, we found that most classifiers made final classification decisions within a small number
of packets [35] (e.g., the first one or two); however, in this study we found two middleboxes that do
not.
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the former using previously unseen replay servers. If countermea-
sures that rely on identifying our servers do not work, it will be
difficult to differentiate against our tests without collateral damage.
For example, an adversary could attempt to frustrate characteri-
zation tests by changing classification rules during the analysis.
Doing so, however, requires differentiating traffic that does not
match targeted rules, e.g., acting on traffic containing “net” instead
of “netflix.” Such an approach could be costly for the network if
it affects legitimate, popular traffic (e.g., all traffic containing the
term “net”).

4.3 Evasion Evaluation
In the second phase of our design, we apply a suite of classifier-
evasion techniques to identify those that prevent the classifier from
applying an unwanted policy (“Evasion Evaluation” in Fig. 1). This
section describes how we generated this suite of techniques by
creating a taxonomy of transport- and network-layer modifications
to an application’s network traffic.

Recall that we assume that a classifier identifies applications
based on the payloads of network traffic. Figure 2(a) depicts the
packet/time diagram of communication between a client and server
that traverses a middlebox classifier. The boxes on the left indicate
the type of packet being exchanged, while the shaded boxes under
“Classifier” indicate what the classifier has detected at each point in
time. In this case, there is no attempt at evasion and the classifier
correctly classifies the flow as HTTP traffic for application B.

Strawman: payload modification. We begin with a simple
strawman and explain why it is not sufficient for our purposes.
Namely, we could leverage the specific classifier rules identified in
the previous phase to avoid classification by removing anymatching
content from an application’s flow (e.g., by deleting them entirely
or replacing them with random bytes). While this is likely to evade
classification, it will also potentially break end-to-end functionality
by generating traffic that the other endpoint does not know how to
interpret. For example, if a classifier matches on the contents of the
HTTP Host header and that field is replaced with random bytes,
a server hosting multiple domains would not be able to tell which
one should handle the request.

Key insight. Previous work showed that middlebox classifiers
use incomplete views of end-to-end communication at the network-,
transport-, and application-layers to match on rules, e.g., by inspect-
ing packets with errors [34], or by looking at a small number of
packets [31, 34] or HTTP/TLS fields [31]. Our key insight is that
we can leverage knowledge of classifier implementations to evade
them in new and systematic ways.

To this end, we developed a taxonomy of classifier evasion tech-
niques that fall into four high-level categories: sending traffic that
is processed by a classifier but never reaches the application-layer
endpoint (inert packet insertion), modifying the size and order in
which portions of payload are revealed to the classifier (payload
splitting and reordering), and causing the middlebox to flush the
classification state for the flow (classification flushing).

Inert packet insertion. Figures 2(b) and 2(c) illustrate the inert
packet insertion technique for a flow belonging to traffic class B.
After completing a traditional three-way handshake, in Fig. 2(b) lib·

erate generates a valid application-layer request for traffic class A
that is wrapped in a TCP/IP packet that is rejected by the server (in
this case due to an invalid IP protocol value). Similarly, in Fig. 2(c)
lib·erate generates a valid packet for traffic class A with a TTL that
expires before it reaches the server. In both cases, the classifier is
not aware that the packet is either not delivered to, or rejected by,
the server, and classifies the flow into class A. Assuming a “match
and forget” classifier, subsequent traffic for B will be treated the
same as class A.

We exhaustively analyzed TCP, UDP, and IP packet fields for
opportunities to create inert packets, which produced a set of tech-
niques listed in Table 3 (leftmost columns, upper portion). Most of
the techniques rely on setting certain bits to invalid value, while
the techniques using header options are motivated by the obser-
vation that middleboxes may treat header options differently [27]
than end hosts. While we believe our list is comprehensive, it will
likely grow as new protocols become available. Instead of relying on
completeness, our approach is designed to leverage any additional
techniques should they arise.

Splitting and/or reordering payload. Figures 2(d) and 2(e)
illustrate the payload splitting and reordering techniques, respec-
tively, for evading classification. Here, we exploit cases where the
middlebox relies on a fixed number of packets to classify, or where
it has an incomplete implementation of the TCP/IP stack that im-
properly handles segments and/or fragments. Unlike the previous
technique, all packets that arrive at the server are valid and payloads
are delivered to the application-layer endpoint.

In Fig. 2(d), lib·erate modifies the original flow by splitting TCP
segments across k IP packets, evading a classifier that inspects only
the first k − 1 (or fewer) packets. In Fig. 2(e) lib·erate reorders the
transmission of segments, evading a classifier that makes decisions
based on matching fields in the first k packets.

We identified five techniques that use splitting/reordering to
evade classification, listed in Table 3 (leftmost columns, lower por-
tion). Again, we believe this list is comprehensive; regardless, lib·
erate can incorporate additional ordering techniques for new pro-
tocols as they are discovered.

Classification flushing. We found empirically that several
middleboxes do not retain their classification results indefinitely;
namely, these results may be flushed after certain packet-based
events or timeouts. We investigate this (out of band) by inserting
increasingly large delays before matching packets (which may time-
out faster), between matching packets and subsequent packets, or
by sending inert RST/FIN packets (Fig. 2(f)). We additionally inves-
tigate the impact of using this technique at different times of day
(where resources to maintain state may become more scarce during
busy hours).

Comparison with NIDS attacks. In their 2001 paper, Kreibich
et al. [34] describe a suite of attacks that evade NIDS devices along
with an approach called norm that normalizes attack traffic to neu-
tralize it. Like their work, we also propose techniques that use
invalid transport- and network-layer packets to confuse middle-
boxes. Interestingly, we find that few defenses identified by norm
are adopted by the operationally deployed middleboxes that we
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(a) Correct classification (b) Using an invalid IP protocol value (c) Using a small TTL value with wrong payload

(d) Fragmenting the IP packet (e) Reordering the TCP segments (f) Using a short TTL with a RST

Figure 2: Diagrams of example techniques that lib·erate uses to evade classification.

tested. Note that our inert injection techniques are inspired by the
NIDS attacks and are well known.

In addition, we propose new evasion techniques that use valid
packets to target specific implementations of traffic classifiers (and
their weaknesses). These include payload splitting, payload reorder-
ing, and classification flushing, which prior work does not address.

Completeness. We cannot claim that the evasion techniques
presented in this paper are complete, nor that they are sufficient
to evade differentiation in every network. Our approach, however,
can incorporate new techniques as they are discovered (e.g., state-
based attacks [46]), and identify cases where middleboxes prevent
evasion (e.g., a connection-terminating TCP proxy). The latter is
an inherent limitation of a unilateral approach to evasion, and in
future work we will investigate how bilateral control can enable
evasion even in such cases.

Evasion countermeasures. We now discuss how a network
might deploy countermeasures against our evasion techniques. For
one, a network could detect and filter lib·erate’s inert packets, much
like Kreibich et al. proposed [34]. Doing so would render this class
of techniques ineffective.

Countermeasures for splitting/reordering packets, as well as
classification flushing, require a middlebox to reassemble packets
and maintain state for longer durations than is done today. While
it is feasible to do so, we believe it is expensive (as it requires
more state and processing) and that engineering such solutions
will become only more costly as connection volumes continue to
increase.

Our TTL-limited technique can be defeated if the middlebox
normalizes the TTL to a large value or if it knows how many hops
remain to the destination. However, the former could have unin-
tended side-effects (e.g., amplifying load during transient loops),
and the latter is difficult to determine accurately due to dynamics
of routing.

In summary, all of our evasion techniques are susceptible to coun-
termeasures and we believe this to be intrinsic to unilateral evasion
techniques. As part of future work, we are exploring low-cost bi-
lateral evasion techniques that are significantly less susceptible to
countermeasures. In the meantime, we find that today’s DPI devices
are all susceptible to multiple evasion strategies.

4.4 Evasion Deployment
After identifying effective techniques for an application, lib·erate
deploys the most efficient, successful evasion technique. Namely,
lib·erate (which can be configured as a proxy or library built into
an application) intercepts the application’s network traffic and
modifies it using the selected evasion technique.

5 IMPLEMENTATION
We built a prototype lib·erate system as shown in Figure 3. The sys-
tem works in three phases; in the first phase, application-generated
traffic exchanged between the application’s client and server is
recorded for controlled tests.6 In the second phase, lib·erate uses
the recorded traffic with a replay server to identify differentiation,
6Alternatively, we can provide built-in traces that are distributed with the tool.
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Figure 3: Diagram of lib·erate implementation. An unmod-
ified client application generates network traffic that is
recorded for classifier identification and evasion (1). lib·er-
ate then uses this traffic to conduct controlled experiments
that identify classification rules and evasion techniques
(2). After identifying effective techniques, lib·erate applies
the most efficient working technique to live application-
generated traffic (3).
reveal classification rules, and evade classification (as described in
Section 4). The replay server is deployed such that the path from the
client traverses the classifier; in some cases it can even be deployed
in the same data center as the application server. The last phase
entails modifying application-generated traffic in-flight using one
of the evasion techniques identified in the previous steps. The lib·
erate system is implemented in Python, currently with 4,800 lines
of code (2,500 of which come from the system developed in [32]).

5.1 Identifying policies and classifier fields
We use previous work [35] to identify the existence of differentia-
tion. A key difference from the previous approach is that we invert
each bit instead of using a VPN proxy or randomized payloads as
the “control” traffic that should not be subject to differentiation. We
do this because the bit inversion operation ensures that the replay is
completely different from the recorded trace at the bit level. Second,
it is deterministic, which allows us to identify portions of payloads
that match classification rules without interference from random
bytes that might also match classification rules.7

We also extend our previouswork [35] to identify not onlymatch-
ing rules on content, but also ones that depend on the position of the
matching payload within the flow. We do so by inserting random
payloads before each matching field, both ones that are in the same
packets as a matching field, and ones that add one or more packets
before the matching field. Our hypothesis (based on our previous
work [35]) is that some classifiers inspect a fixed number of packets
or bytes in a flow before reaching a final classification decision. To
test this hypothesis, we first append random bytes in increments
of one MTU until we observe a change in classification. Assuming
this change occurs after k packets were sent, then we append k
1-byte packets to the flow instead of k MTU-sized packets to see if
the change in classification depends only on packet count instead
of bytes. If so, we conclude there is a fixed packet-based limit; else,
we conclude that the limit is no more than k ∗MTU bytes. To avoid
iterating forever, we use a tunable maximum threshold of packets

7This approach can be detected by middleboxes, so we fall back to randomization if bit inversion
fails to reveal correct matching rules.

(based on our observations, 10) to prepend before concluding that
the classifier will inspect all packets in a flow.

5.2 Evading classification
To implement our evasion approaches, we needed to address the
following key challenges.

Determining themiddlebox location. With TTL-limited pack-
ets (first and last rows in Table 3), we send a valid packet that
traverses the middlebox but times out before reaching the server.
This requires lib·erate to first identify where the middlebox is lo-
cated (in terms of number of TLL-decrementing hops) relative to
the host generating the packet. We implement an approach similar
to traceroute and Tracebox [18], using a series of probes starting
with TTL=0 and incrementing the TTL on subsequent probes until
we observe a response indicating that the TTL-limited flow was
classified. In the case of censorship, the inert packet often generates
a response from the middlebox such as a block page or RST packet.
To detect shaping and zero rating, we use the approaches in our
previous work [32, 35].

Do invalid inert packets reach the middlebox? Most of our
inert packet insertion techniques rely on sending packets that are
not compliant with TCP/IP protocols and thus may (but not must)
be dropped by any intermediate hop between endpoints. To test
whether packets are dropped in the network, we send inert packets
to our lib·erate replay server: if they reach the server, then we
know that they also reached the middlebox. In the case where they
do not reach our replay server, they may still have traversed the
middlebox before being dropped. In this case, we can test whether
any subsequent (valid) packets in the flow experience differentiation.
If so, then the middlebox classified traffic based on the inert packet.
Otherwise, the inert packet is either ignored by the middlebox or
never reaches it.

Determining how to split/reorder payloads. The number
of possible ways to split and reorder payloads grows combinato-
rially with the size of the flow being tested. Thus, it is infeasible
to test all combinations, so we use a heuristic approach. First, we
split the packet into at most n packets, where any matching fields
are split across packet boundaries. We currently use a conservative
threshold ofn = 10 based on our empirical observations that packet-
limited classifiers inspected no more than 5 packets. Likewise, we
test whether classifiers support IP fragmentation and reassembly
by splitting each packet intom fragments (currentlym = 2). Our
values of n andm were chosen empirically to improve lib·erate effi-
ciency; we can further adapt/tune this parameter based on empirical
observations in deployment.

For reordering packets and fragments, we explore all combi-
nations of order starting with reversing the initial n-packet, and
stop when we find a reordering that evades classification. In our
experiments, we found that this reveals effective packet-order eva-
sion techniques after just one try (when focusing only on those
techniques that use packet-limited classifiers).

Efficient evasion testing. Our taxonomy of evasion techniques
allows us to efficiently rule out tests based on observed classification
behavior. For example, if lib·erate finds that a classifier inspects all
packets instead of the firstn packets, thenwe know that inert packet
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Technique Description Overhead
Inert packet insertion Inject packet that either does not reach the

server, or reaches but is dropped.
k packets

Payload splitting Divide a flow’s payload into packets of differ-
ent sizes from the original.

k*40 bytes1

Payload reordering Reorder packets relative to the original flow. k*40 bytes1

Classification flushing Cause a classifier to flush its classification re-
sult, leaving a flow unclassified.

t seconds or 1 packet2

Table 2: High-level evasion techniques in lib·erate. 1Plus nominal

overhead for reassembling. 2When flushing with inert RST.

insertions are unlikely to evade the classifier and we can eliminate
those tests from our suite. Here, lib·erate uses only reordering tests
in this case. When lib·erate identifies “match and forget” classifiers,
it instead tests the more efficient inert packet insertion techniques
first. When deciding the order in which to test techniques that
have not been ruled out, lib·erate tests evasion techniques that
were effective in our study first, based on the assumption that such
classifier implementations are also deployed elsewhere.

5.3 Performance of lib·erate
The primary overheads of lib·erate are the characterization of the
classifier for a specific application, and the techniques used to evade
it. The (relatively expensive) characterization step need only be
conducted once for each classifier rule, and can be skipped as long as
the rule remains in place. In our experiments, this step ranges from
10–35 minutes and 300 KB (Web pages) to 140MB (video streams) of
data. This cost in general should be incurred rarely, and the results
from one user in a network can be shared with another.

The remaining cost comes from the evasion technique deployed
when running an application. These costs are relatively low, both
in terms of packets and delay (Table 2). When performing injection,
splitting or reordering, lib·erate overhead consists of k extra inert
packets (up to 5 MTU-sized packets) or adding a nominal amount
of processing time for the server to reassemble the k segments. In
practice, we find that k is always less than 5; when using lib·erate on
a video streaming connection, this can represent small fractions of a
percent of data overhead. When using lib·erate on test applications,
we did not notice any qualitative negative impact on performance.

When using the classification flushing approach, the overhead is
either sending one inert RST packet or waiting for t seconds. The
effects of the former are nearly immediate, while for the latter we
found empirically that t ranges from 40 seconds to 240 seconds (for
the GFC, see §6.5).

6 EVALUATION
We evaluate our approach both in a testbed environment and “in the
wild” in operational networks known to use classifiers to impose
policies on network traffic. In our testbed environment, which con-
tains a carrier-grade DPI device, we can evaluate our approaches
and directly view their impact on classification. We use this to
evaluate the efficiency of lib·erate for each of its phases, and to char-
acterize the DPI device itself and the effectiveness of our evasion
techniques. The experiments in operational networks demonstrate
that our approach works well outside our testbed, and that it can
reveal effective evasion techniques previously unknown publicly.

6.1 Testbed experiments
Our testbed consists of a client connected to a server via a DPI
middlebox from a top-5 industry leading DPI middlebox vendor and
router. We record popular TCP and UDP content that is classified
by the DPI device, then use these traces to replay traffic with and
without lib·erate. The middlebox shows the result of classification
immediately after traffic flows through it.

For each application, we evaluate the following. First, we deter-
mine how many rounds of measurement are required to reverse
engineer the classifier for the application, and use this information
to calculate the runtime and data consumption for these tests. Next,
we evaluate the effectiveness of every evasion technique and the
efficiency for identifying them. Last, we determine how long clas-
sification of flows persists on the DPI device. We omit any tests
for identifying differentiation, since this was covered in previous
work [32].

Efficiency of classifier analysis. Identifying the matching
rules used for classification requires repeated rounds where differ-
ent portions of replay traffic are blinded via bit inversion. We use
our testbed (with ground truth classification results) to determine
the number of rounds, the time required to identify all matching
fields, and cost in terms of bytes. We focus on two categories: HTTP
traffic (which covers several streaming applications including Ama-
zon Prime Video, Spotify, ESPN streaming video) and UDP traffic.

For HTTP traffic in our experiments, lib·erate needs at most 70
replay rounds to identify all the matching fields. This takes no more
than 10 minutes (given a 5-second test time) and could be hastened
by using multiple parallel connections. For UDP traffic, we focus on
Skype. We find that lib·erate can successfully identify all matching
fields in the first six packets, using 115 replays. In our testbed,
we needed less than 2KB of data for each replay round for both
TCP and UDP traffic, since we can check the classification results
immediately. We discuss the costs for each operational network in
each case study in the next sections.

Classifier matching fields. Much like what we found previ-
ously [35], the matching fields in HTTP/S traffic typically contain
human-readable text such as hostnames, content type, and appli-
cation names in user agent strings. Unlike previous work, we also
identify UDP-based matching rules. For Skype, we find that it uses
bytes that are not human-readable. After manual analysis of the
matching rules that lib·erate identified, we found that the classifier
focused on STUN packets and used matching fields that correspond
to standard STUN message types and attributes. In this case, it
focused on identifying the attribute MS-SERVICE-QUALITY8 (i.e.,
0x8055 as the attribute type) in the first packet from the client. We
also found that prepending one packet with one byte of payload
changes the classification result, which suggests that the classifier
only inspects packets at certain position in the flow.

Evading classification We now characterize how well our
evasion techniques work in our testbed. We summarize our findings
below, and Table 3 shows the detailed results of both inert packet
insertion techniques and payload splitting/reordering. There are
two columns for each test environment, where a green check mark
(✓) in the left column (CC?) indicates that lib·erate can evade the

8The MS in the attribute name refers to Microsoft, which owns Skype.
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Testbed T-Mobile China Iran AT&T Server Response
Prot. Technique CC? RS? CC? RS? CC? RS? CC? RS? — Lin. Mac Win.

Inert packet insertion Dropped by OS?
IP Lower TTL to only reach classifier ✓ × ✓ × ✓ × ×3 × × — — —
IP Invalid Version × × × × × × × × × ✓ ✓ ✓
IP Invalid Header Length × × × × × × × × × ✓ ✓ ✓
IP Total Length longer than payload ✓ × × × × × × × × ✓ ✓ ✓
IP Total Length shorter than payload × × × × × × × × × ✓ ✓ ✓
IP Wrong Protocol ✓1 ✓ × ✓ × ✓ × × × ✓ ✓ ✓
IP Wrong Checksum ✓ × × × × × × × × ✓ ✓ ✓
IP Invalid Options ✓ ✓ ✓ × × × ×3 × × × × ✓
IP Deprecated Options ✓ ✓ ✓ × × × ×3 × × × × ×

TCP Wrong Sequence Number ✓ ✓ × × × ✓ ×3 × × ✓ ✓ ✓
TCP Wrong Checksum ✓ ✓ × × ✓ ✓4 ×3 × × ✓ ✓ ✓
TCP ACK flag not set ✓ × × × ✓ ✓ ×3 × × ✓ ✓ ✓
TCP Invalid Data Offset × ✓ × × × ✓ × × × ✓ ✓ ✓
TCP Invalid flag combination ✓ ✓ × × × ✓ ×3 × × ✓ ✓ ×6

UDP Invalid Checksum ✓ ✓ — × — ✓ — ✓ × ✓ ✓ ✓
UDP Length longer than payload ✓ ✓ — × — × — ✓ × ✓ ✓ ✓
UDP Length shorter than payload ✓ ✓ — × — × — ✓ × ✓5 ✓ ✓

Payload splitting Delivered by OS?
IP Break packet into fragments ✓ ✓2 × ✓2 × ✓2 × × × ✓ ✓ ✓
TCP Break packet into segments ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × ✓ ✓ ✓

Payload reordering Delivered by OS?
IP Fragmented packet, out-of-order ✓ ✓2 × ✓2 × ✓2 × × × ✓ ✓ ✓
TCP Segmented packet, out-of-order ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × ✓ ✓ ✓
UDP UDP packets out-of-order ✓ ✓ — ✓ — ✓ — ✓ × ✓ ✓ ✓

Classification flushing Delivered by OS?
IP Pause for t sec. (after match) ✓ ✓ × ✓ × ✓ × ✓ × ✓ ✓ ✓
IP Pause for t sec. (before match) ✓ ✓ × ✓ ✓7 ✓ × ✓ × ✓ ✓ ✓

Dropped by OS?
TCP TTL-limited RST packet (a) ✓ × ✓ × × × × × × ✓ ✓ ✓
TCP TTL-limited RST packet (b) ✓ × ✓ × ✓ × × × × ✓ ✓ ✓

Table 3: Effectiveness of lib·erate’s evasion techniques, showing whether the technique Changes Classification (CC?), whether
the packet Reaches the Server (RS?), and whether various OSes drop or deliver the packet. For CC?, a ✓ means that the tech-
nique allows lib·erate to change classification, a ×means that it does not. For RS?, a✓means that the packet that was inserted
or modified does reach the server, a ×means that it does not, and a ✓ means the packet that arrives at the server is different
than what was sent (e.g., the IP fragments are re-assembled). For the “Server Response” columns, a ✓ means that the evasion
technique does not impact the transport- or application-layer integrity; a ×means that it might.
1The classifier yields different classification results for TCP and UDP. 2The fragmented packets are reassembled before reach-
ing the server. 3Evasion fails, but an inert packet with blocked content causes the connection to be blocked. 4The TCP check-
sum is corrected before arriving at the server. 5The server reads the content up to the specified length. 6The server sends a RST
packet in response. 7The interval depends on the time of the day.

classifier using the technique specified at the beginning of the row.
A green check mark (✓) in the right column (RS?) indicates that
the inserted or modified packets reach the server (i.e., we know
that it traversed the classifier). The red crosses (×) indicate that
classification was not changed (CC?) or that the packet did not
reach the server (RS?).

These tables cover our testbed and the case studies that follow;
the results for our testbed are in the group of columns labeled
“Testbed.” For example, the first row indicates that lib·erate evades
the classifier by inserting a packet with a low TTL, and the inserted
packet does not reach the server.

Focusing on the CC? column under “Testbed,” a wide range of
inert packet insertion techniques successfully evade classification.
The exceptions fall into a small number of categories that include
specifying length fields that are too small and using invalid proto-
col/version values.

We find that payload splitting/reordering is always effective in
our testbed. Taken to an extreme, we can evade classification even
when the only modification is that the first packet contains only
one byte of payload. Further, this works for both UDP and TCP.

To identify opportunities for evasion via classification flushing,
we determine how long each classification result persisted in the
middlebox. We found that our testbed middlebox uses a timeout
value of 120 seconds for all classification results. In addition, for
TCP connections, the timeout is reduced to 10 seconds after the
classifier sees a RST packet for that connection.

In addition to classification results, we test whether packets are
properly handled at the server without side effects, for each popular
OS (Linux, MacOS, Windows). The rightmost columns in Table 3
present the results, where a green check mark (✓) indicates behav-
ior that enables unilateral evasion. For the inert packet injection
techniques, this means that the server drops inert packets; for pay-
load splitting/reordering it means that the server accepts packets
and delivers them to the application. A red cross (×) indicates a
server response that might prevent an application from working
due to unexpected payload.

6.2 T-Mobile US (TMUS)
In the US, T-Mobile sells a cellular service plan that by default in-
cludes “Binge On” and “Music Freedom,” which provide zero-rated9

9 i.e., the data from using these services does not count against the subscribers monthly data quota.
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video streaming and zero-rated music streaming, respectively. We
ran lib·erate over TMUS using recorded traffic from a set of ap-
plications that are classified under one of these programs. This
comprises HTTP or HTTPS traffic from YouTube10, Amazon Prime
Video and Spotify.

Efficiency of classifier analysis. lib·erate needs between 80
and 95 rounds for classification. Unlike in the testbedwhere we have
immediate access to the classification results, we use our account’s
data-usage counter after each replay to determine whether the
traffic is zero rated (i.e., classified). The counter may either be
slightly out of date, or include data from background traffic, and
we found via manual analysis that using at least 200KB of data
(approximately 15 s of test time) for each replay eliminates the risk
of false inference.

Altogether, our tests took 23 minutes and 18MB of data in total.
Note that these experiments can be conducted in advance and in
the background (e.g., when the device is not using the network)
and the results can be cached for future use in real-time evasion.

Classifier matching fields. Similar to our testbed findings,
TMUS classifies applications by matching on text strings in certain
fields such as host headers or the SNI field (e.g., cloudfront.net in
the Host header, and .googlevideo.com in the SNI field during TLS
handshake). For both HTTP and HTTPS traffic, prepending one
packet with one byte of (dummy) data changes classification, which
suggests that payload splitting or reordering would be effective
evasion strategies.

Evading classification. We now characterize how well our
evasion techniques work in T-Mobile’s network (second group of
columns in Table 3). The CC? column indicates that three inert
packet insertion techniques evade classification in TMUS, one uses
TTL-limited probes and the other two use invalid IP Options. For
TTL-limited probes, we found that using an inert packet with TTL =
3 is sufficient to evade the classifier. For invalid IP Options, we found
that while it is effective for evading the classifier, unfortunately
these packets are not dropped by the server for most OSes. In
general, such packets are not actually inert; however, we found that
these invalid packets were dropped somewhere between the TMUS
classifier and the server, thus enabling evasion without side effects.

The table also shows that payload splitting/reordering across
multiple packets is effective, while IP fragmentation is not. Without
reordering, evasion requires the payload of the matching packet to
be split across five or more packets; however reversing the order
in which packets are sent is always effective, even with as few as
two packets. We believe that this is because the TMUS classifier
reassembles TCP segments only if the first payload-carrying packet
in the flow begins with GET, and if so, it uses only the first five
packets in the flow to search for matching fields.

We surprisingly found that TMUS does not classify UDP traffic
for any of the applications we tested. An implication is that YouTube
traffic that uses QUIC is not throttled or zero rated.

Regarding classification flushing, we found that the classification
result in TMUS applies to a flow for more than 240 s (the largest
interval we tested) even if there are no packets exchanged during

10YouTube flows using QUIC (an application-layer transport layer built atop UDP) are not classified
or zero rated by T-Mobile, so we use only TCP flows when evaluating YouTube.

the interval, and the classification result is flushed immediately
after the classifier sees a RST packet in the flow.

When replaying a 10MB Amazon Prime Video trace, the average
throughput is 1.48 Mbps and peak throughput is 4.8 Mbps without
lib·erate. With lib·erate evasion enabled, the average throughput is
4.1 Mbps and the peak throughput is 11.2 Mbps.

6.3 AT&T
TheAT&T Stream Saver [1] service is an opt-out program that limits
streaming video to “DVD quality” without zero-rating. We ran lib·
erate over AT&T using recorded traffic from a set of video streaming
applications, including HTTPS traffic (YouTube, Amazon Video)
and HTTP traffic (NBCSports). We found that replayed HTTP traffic
is throttled to 1.5 Mbps, while Stream Saver did not interfere with
HTTPS traffic when running our experiments. Further analysis
indicates that is because AT&T runs a transparent web proxy and
did not inspect TLS traffic at the time of our tests.

Efficiency of classifier analysis. lib·erate identifies the match-
ing fields in HTTP request with 71 replays. Unlike Binge On, Stream
Saver classifies video content only on port 80. The only signal for
differentiation is throughput (classified video content is throttled
to 1.5 Mbps), each round of test consumes around 2MB of data and
30 seconds.

Classifier matching fields. The matching contents in packets
from client to server are standard HTTP parameters such as ’GET’,
’HTTP/1.1’. We found the server-to-client packets are also used
for classification; namely, the keyword Content-Type: video. We
also find that prepending one MTU-sized packet can break the
classification.

Evading classification. None of the evasion techniques is ef-
fective for Stream Saver, because they deploy a transparent HTTP
proxy that terminates TCP connections and thus serves as an end-
point in addition to being a middlebox. Although lib·erate fails to
evade Stream Saver, the fact that only traffic on port 80 is differen-
tiated in our tests makes evading it even more straightforward—by
simply redirecting traffic to a different port (e.g., using TLS on 443).

6.4 Sprint
Sprint offers “mobile optimized video, music streaming, and gam-
ing” as part of their unlimited plans. We tested whether this is
implemented using DPI or header-space analysis, and found no
evidence that it is.

Specifically, we tested different IP addresses, ports, traffic to pop-
ular video streaming services, replays of those flows to our servers,
both in the original form and with bit inversion. We found no pat-
tern to which flows received relatively more or less bandwidth. We
repeated the tests on a SIM card using a limited-data plan, and saw
similar results.

6.5 The Great Firewall of China
We now turn to the so-called Great Firewall of China (GFC), a
term referring to the system that the Chinese government uses to
regulate use of the Internet inMainland China. TheGFC implements
policies for blocking certain applications and websites, so we use
lib·erate to determine if this blocking can be evaded.

cloudfront.net
.googlevideo.com
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Our tests use a client in China and servers in the US. We record
HTTP traffic from a client located in the US visiting a website that
is blocked in China.11 We then replay the trace from China using
our US replay server and confirm it is blocked by 3–5 RST packets.
Thus, we use the presence of spurious RST packets to indicate that
traffic has been classified by the GFC.

Efficiency of classifier analysis. lib·erate identifies the match-
ing fields in Web traffic with 86 replays, each of which consists of
4 KB of data. These tests take less than 15 minutes and consume
less than 400 KB of data. Note that detecting blocking is extremely
efficient because the signal (RST packets) is clear and immediate.
The keywords we identified include GET and economist.com in the
Host header.

Classifier matching fields. Similar to other classifiers, the
GFC classifier determines what to block based on text strings in
the HTTP host header. In addition, we found that unlike other
classifiers in our tests, the GFC blocks all traffic toward a server,
even uncensored content after it blocks two replays for that server
and port. This behavior can potentially lead to inconsistent results
when determining matching fields, so in practice we use different
server ports for each replay. Our subsequent analysis confirmed
that doing so leads to correct results when identifying matching
fields. In addition, we find that prepending a replay with one byte
of (dummy) traffic causes classification to fail, similar to what we
found for TMUS.

Evading classification. The third column group in Table 3
shows the results for our evasion techniques against the GFC. In
short, using a TTL-limited probe, an invalid TCP checksum, and
packets without an ACK flag set, were all effective. lib·erate’s TTL-
probing technique found that using a TTL of 10 leads to misclassi-
fication without reaching the server when sent from our vantage
point. Interestingly, prepending a replay with dummy traffic does
evade a classifier, indicating that having server-side support can
provide additional evasion opportunities.

Similar to TMUS, the GFC does not classify UDP traffic for any
of the applications we tested. One implication is that users can view
otherwise censored content on YouTube simply by using the QUIC
protocol.

Sending a RST before the matching packet can evade censorship;
however, unlike TMUS, sending a RST packet after being classified
has no observable effect on classification. We also found that adding
delays before the matching packet can evade classification, and the
minimum delay changed over the course of the day. To quantify
this, we tested delays ranging from 10 to 240 seconds and repeated
tests six times per hour over the course of two days. We plot the
results in Figure 4 for one of those days (the other was similar),
where the x-axis represents time of day and the y-axis represents
the delay interval. A green dot indicates the minimum delay that
succeeded in evasion, while a red dot represents the case where
even our longest delay interval did not flush the classification result.

We see time-of-day effects, where traditional busy hours permit
shorter delays (likely due to classification results being flushed due
to scarce resources), while during quiet hours even long delays do

11We use http://www.economist.com and avoid HTTPS traffic, which is typically blocked via active
probing [22].

Figure 4: Successful evasion intervals vary during the day.

not work. Note that when shorter delay intervals (i.e., ≤ 60 seconds)
succeed, they typically work only for a subset of tests. To the best of
our knowledge, we are the first to observe the opportunity for delay-
based evasion to circumvent censorship based on faster connection-
state flushing during busy hours. Note, however, that we found that
adding delays after sending a matching GET request never evades
classification.

6.6 Iran
Our final case study focuses on Iran, where certain websites are
also blocked at a national level. Similar to the scenario for testing
the GFC, we placed a replay client in Iran, a replay server is in the
US, and we use a trace of web traffic recorded from the US that
we confirmed is blocked in Iran. The signal for blocking in Iran is
that the client receives an unsolicited “HTTP/1.1 403 Forbidden”
response in addition to two RST packets.

Efficiency of classifier analysis. For the tested website, lib·
erate successfully identifies the matching fields used by the classifier
with 75 replays, which takes about 10 minutes and consumes 300 KB
of data.

Classifier matching fields. Similar to the GFC, the Iranian
classifier uses keyword matches in the HTTP Host header (e.g.,
facebook.com). Aside from that, we found substantial differences
when compared to other classifiers in our study.

For one, we found that prepending packets does not appear to
change classification results, suggesting that the classifier checks
every packet in a flow instead of using a “match and forget” policy.
Specifically, we found no difference in classification result when
appending any number of 1,400 B packets, up to 1,000 packets.

Another observation is that traffic traversing the classifier is not
blocked if the server port is not the standard HTTP port 80 (e.g.,
traffic blocked on port 80 is not blocked if the HTTP server uses
port 8080), suggesting that the classifier uses both port-specific and
content-specific rules. As a result, lib·erate must use only port 80 to
identify the classifier’s matching fields in Iran.

Evading classification. Unsurprisingly, inert packet insertion
techniques do not work for evading the classifier in Iran, due to
the fact that the classifier inspects every packet in a flow. That said,
we found that traffic without any blocked content will be blocked if

http://www.economist.com
facebook.com
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it is preceded with an inert packet containing a blocked payload—
an example of misclassification. Though the TTL-limited probe
technique was not effective for evasion, we nonetheless found that
the classifier is eight hops away from our client in our experiments.

Interestingly, we can successfully evade classification simply by
using payload splitting; namely, by splitting the payload of an IP
packet’s matching field across two packets (with or without reorder-
ing). We suspect this occurs because the classifier in Iran uses a
per-packet classification implementation (i.e., it makes classification
decisions on each packet independently) instead of doing classifi-
cation on a stream of bytes that spans multiple packets. We also
found that IP fragments were dropped before reaching our server
when testing from Iran, whereas IP fragments were reassembled
and delivered to our server in all other tested environments.

Due to the fact that the Iran classifier inspects every packet, we
did not conduct an analysis of classification flushing and thus omit
it from this section.

7 DISCUSSION
This section discusses limitations, future work, and other issues.

Arms race. lib·erate does not end the arms race between net-
works that deploy differentiation and those who seek to evade it;
rather, it provides efficient, unilateral evasion in a way that we
expect will make the arms race substantially more expensive for
networks. In addition, despite the fact that techniques to prevent
some of our evasion techniques have been available for more than
a decade, our results show that few are actually deployed.

Impact of filtering. We found that many of the inert packets
that worked in our testbed were dropped in every operational
network we tested. This is likely due to routers and/or firewalls
that drop malformed packets. To maximize the potential for evasion,
operators of lib·erate deployments should disable such filters on lib·
erate traffic to the extent possible.

IPv6. This paper focused exclusively on IPv4 traffic. While we
did not test IPv6 traffic in this study, we later observed Verizon
throttled video traffic on prepaid SIMs (similar to what was reported
by [14]) both over IPv4 and IPv6. Based on this observation, we
will extend lib·erate to evade differentiation over IPv6.

Deployment location. This paper focuses primarily on a client
deployment, because doing so makes it easy to use lib·erate by
running replay servers at arbitrary locations via cloud services. We
also support server-only deployments, but they require control over
clients in affected networks for replay traffic. Some platforms, such
as ICLab and OONI [42], provide such an ability but the scale of
such systems is in general small.

Detection and bidirectional lib·erate. It is possible to detect
our approaches and adapt to them using devices that more exten-
sively keep track of state, or that permit some level of collateral
damage. lib·erate in part addresses this by selecting from a suite
of evasion techniques, each of which requires a different type of
countermeasure. To further enhance lib·erate’s resilience to counter-
measures, we are investigating techniques that modify application-
layer properties of packets in arbitrary ways. This requires support
on the server side, and coordination between lib·erate clients and
servers. Such an approach can be combined with our current design

to provide evasion techniques that are not only resilient to adapta-
tion, but that can incorporate payload-modification strategies that
are not publicly known by the differentiating ISP a priori.

Masquerading. This paper focuses on how lib·erate evades dif-
ferentiation. However, in some cases users may want to masquerade
as a type of differentiated traffic (e.g., if it is zero rated and/or re-
ceives better performance). Our framework supports masquerading
as long as users supply traffic to place in inert packets, and we are
implementing this as future work.

Lawfulness and terms of service. lib·erate can be used as a
vehicle for enabling free speech where it is suppressed, but it also
can be used to violate terms of service and or local laws—in fact, it
can do all of these at the same time. We do not solve these issues;
rather, we provide a technical solution for users that want to ensure
that their network traffic is treated neutrally and we do not condone
uses that can lead to harm.

Ethics. With the exception of experiments in Iran, all tests
were conducted by one of the authors. For the tests in Iran, we
used a virtual private server acquired by an ICLab [4] partner who
consented to allowing its use for censorship measurements. The
ICLab project that the partner participates in has IRB approval.

8 CONCLUSION
In this paper, we designed and implemented lib·erate, a tool that al-
lows unmodified network applications to automatically, adaptively,
and unilaterally evade middleboxes that provide them with un-
wanted differential service (e.g., blocking or shaping). Our approach
systematically leverages inconsistencies between the end-to-end
view of network flows and the view only from middleboxes, to
evade policies applied to flows matching traffic-classification rules.
We showed that lib·erate has reasonably low data-consumption
overhead during the out-of-band classifier-detection phase, and
that afterward it evades classifiers with negligible overhead. We
then used our approach to characterize and evade several middle-
box policies, both in our testbed and in nation-scale operational
networks. In future work, we will enhance lib·erate’s robustness by
incorporating application-layer modification.
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